Pali wants to find the height, *h* m, of a tree. He stands a distance, *d* m, from the tree. Then he measures the angle, *a*, of the top of the tree from the horizontal. His friend then measures the height, *e* m, of Pali's eye from the ground.

(a) Show that the height of the tree is given by this formula.

 $h = e + d \tan a$

[2]

(b) When Pali stands 25 m from the tree, angle $a = 32^{\circ}$. The height of his eye above the ground is 1.7 m.

Use the formula $h = e + d \tan a$ to find the height of the tree.

(c) Rearrange this formula to make *a* the subject.

 $h = e + d \tan a$

(c) _____ [3]

2 In this question, all lengths are in centimetres.

Work out the area of this triangle. Give your answer in the form $ax^2 + bx$.

_____cm² [3]

ABCD is a quadrilateral.
 Angles BAD and DBC are both right angles.
 Angles ABD and BCD are both 35°.
 AB = 6.5 cm.

Calculate the length of CD.

_____ cm **[6]**

OCR Maths GCSE - SOHCAHTOA

- Sean is building a shed.
 This diagram shows the end view of his shed.
 The width ED of the shed is 2.5 m.
 The height CD of the front of the shed is 2.1 m.
 - (a) Sean makes the roof AD 2.8 m long.

Calculate the height AB of the back of the shed.

(a)_____ m [4]

(b) For a good run-off of water from a roof, the angle of slope with the horizontal ED should be at least 15°.

Calculate whether the roof of Sean's shed has a good run-off. Show how you decide. [3]